Ecological connectivity in the three-dimensional urban green volume using waveform airborne lidar

نویسندگان

  • Stefano Casalegno
  • Karen Anderson
  • Daniel T. C. Cox
  • Steven Hancock
  • Kevin J. Gaston
چکیده

The movements of organisms and the resultant flows of ecosystem services are strongly shaped by landscape connectivity. Studies of urban ecosystems have relied on two-dimensional (2D) measures of greenspace structure to calculate connectivity. It is now possible to explore three-dimensional (3D) connectivity in urban vegetation using waveform lidar technology that measures the full 3D structure of the canopy. Making use of this technology, here we evaluate urban greenspace 3D connectivity, taking into account the full vertical stratification of the vegetation. Using three towns in southern England, UK, all with varying greenspace structures, we describe and compare the structural and functional connectivity using both traditional 2D greenspace models and waveform lidar-generated vegetation strata (namely, grass, shrubs and trees). Measures of connectivity derived from 3D greenspace are lower than those derived from 2D models, as the latter assumes that all vertical vegetation strata are connected, which is rarely true. Fragmented landscapes that have more complex 3D vegetation showed greater functional connectivity and we found highest 2D to 3D functional connectivity biases for short dispersal capacities of organisms (6 m to 16 m). These findings are particularly pertinent in urban systems where the distribution of greenspace is critical for delivery of ecosystem services.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conditional Random Fields for Airborne Lidar Point Cloud Classification in Urban Area

Over the past decades, urban growth has been known as a worldwide phenomenon that includes widening process and expanding pattern. While the cities are changing rapidly, their quantitative analysis as well as decision making in urban planning can benefit from two-dimensional (2D) and three-dimensional (3D) digital models. The recent developments in imaging and non-imaging sensor technologies, s...

متن کامل

Remote Sensing of Suspended Sediment Concentrations Based on the Waveform Decomposition of Airborne LiDAR Bathymetry

Airborne LiDAR bathymetry (ALB) has been shown to have the ability to retrieve water turbidity using the waveform parameters (i.e., slopes and amplitudes) of volume backscatter returns. However, directly and accurately extracting the parameters of volume backscatter returns from raw green-pulse waveforms in shallow waters is difficult because of the short waveform. This study proposes a new acc...

متن کامل

A Comparison of Forest Biophysical Parameters Assessed with Lidar Data on Three Platforms: Ground, Airborne, and Satellite

7 Lidar remote sensing from three platforms – ground, airborne, and spaceborne – has 8 the capability to acquire direct three-dimensional measurements of the forest canopy that 9 are useful for estimating a variety of forest inventory parameters, including tree height, 10 volume, and biomass, and also for deriving useful information for characterizing wildlife 11 habitat or forest fuels. 12 The...

متن کامل

ارزیابی پیوستگی اکولوژیک لکه‌های سبز شهری با استفاده از تئوری گراف،مطالعه موردی کلان‌شهر اهواز

Connectivity of urban green patches is an important structural attribute of urban landscape that facilitates the species movement and transfer of their genes among their habitats. So far, several methods including Graph Theory have been applied to assess ecological connectivity. This research was aimed  to study the application of graph theory to measure the connectivity of green patches in the...

متن کامل

Morphological characterization of full waveform airborne LiDAR data Context

The main principle of remote sensing LiDAR is to send a laser pulse from a transmitter and to analyze the backscattered signal (in particular its largest amplitude) to reconstruct the 3D position of the encountered objects (to which the intensity of the wave is generally associated). Using airborne LiDAR, it is possible to obtain a series of 3D positions whose analysis is extremely interesting ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017